Given sin A+$$sin^{2}$$ A=1
==> sin A = 1-$$sin^{2}$$ A
==> sin A = $$cos^{2}$$ A ($$\because cos^{2}A+sin^{2}A$$=1)
$$cos^{2}$$ A=sin A ==> $$cos^{4}A$$=$$sin^{2}A $$
$$\therefore cos^{2}A+cos^{4}A=1 ( \because sin A+sin^{2}A=1)$$
Create a FREE account and get: