In ΔUVW measure of angle V is 90°. If cosecU = 13/12, and UV = 2.5cm, then what is the length (in cm) of side VW?
Given : $$\cosec U$$ = $$\frac{13}{12}$$
Also, $$\cosec U=\frac{UW}{VW}=\frac{13}{12}$$
Let UW = $$13x$$ cm and VW = $$12x$$ cm
Thus, in $$\triangle$$ UVW, => $$(UV)^2=(UW)^2-(VW)^2$$
=> $$(UV)^2=(13X)^2-(12X)^2$$
=> $$(UV)^2=169x^2-144x^2=25x^2$$
=> $$UV=\sqrt{25x^2}=5x$$ cm
According to ques, => $$5x=2.5$$
=> $$x=\frac{2.5}{5}=\frac{1}{2}$$
$$\therefore$$ VW = $$12\times\frac{1}{2}=6$$ cm
=> Ans - (B)
Create a FREE account and get: