In ΔABC measure of angle B is 90°. If cosecA = 13/12, and AB = 10cm, then what is the length (in cm) of side AC?
Given : AB = 10 cm and cosec A = 13/12
=> $$cosecA=\frac{AC}{BC}=\frac{13}{12}$$
Let $$AC=13x$$ and $$BC=12x$$
In right triangle ABC, => $$(AC)^2=(AB)^2+(BC)^2$$
=> $$(13x)^2=(10)^2+(12x)^2$$
=> $$169x^2-144x^2=100$$
=> $$25x^2=100$$
=> $$x^2=\frac{100}{25}=4$$
=> $$x=\sqrt4=2$$
$$\therefore$$ $$AC=13\times2=26$$ cm
=> Ans - (D)
Create a FREE account and get: