ΔABC is right angled at B. If $$cot A = \frac{8}{15}$$, then what is the value of $$cos C$$ ?
Given : $$\cot A$$ = $$\frac{8}{15}$$
Also, $$\cot A=\frac{AB}{BC}=\frac{8}{15}$$
Let AB = 8 cm and BC = 15 cm
Thus, in $$\triangle$$ ABC,
=> $$(AC)^2=(AB)^2+(BC)^2$$
=> $$(AC)^2=(8)^2+(15)^2$$
=> $$(AC)^2=64+225=289$$
=> $$AC=\sqrt{289}=17$$ cm
To find : $$\cos C=\frac{BC}{AC}$$
= $$\frac{15}{17}$$
=> Ans - (D)
Create a FREE account and get: