In each of the following questions, two equations I and II have been given. Solve these questions and answer
(1)if x < y
(2) if x ≤ y
(3) if x = y or the relation cannot be established
(4) if ≥ y
(5) if x > y
Statement I : $$x^{2}-2x-\sqrt{5}x+2\sqrt{5}=0$$
=> $$x (x - 2) - \sqrt{5} (x - 2) = 0$$
=> $$(x - \sqrt{5}) (x - 2) = 0$$
=> $$x = \sqrt{5} , 2$$
Statement II : $$y^{2}-\sqrt{3}y-\sqrt{2}y+\sqrt{6}=0$$
=> $$y (y - \sqrt{3}) - \sqrt{2} (y - \sqrt{3}) = 0$$
=> $$(y - \sqrt{2}) (y - \sqrt{3}) = 0$$
=> $$y = \sqrt{2} , \sqrt{3}$$
$$\therefore$$ $$x > y$$
Create a FREE account and get: