The lengths of the two diagonals of a rhombus are 7 cm and 24 cm. Find the length of its perimeter (in cm).
Given : ABCD is a rhombus and AC = 24 cm and BD = 7 cm
To find : Perimeter of ABCD
Solution : Diagonals of a rhombus bisect each other at right angle.
=> BE = $$\frac{7}{2}=3.5$$ cm and AE = $$\frac{24}{2}=12$$ cm
Thus, in right $$\triangle$$ AEB,
=> $$(AB)^2=(AE)^2+(BE)^2$$
=> $$(AB)^2=(12)^2+(3.5)^2$$
=> $$(AB)^2=144+12.25=156.25$$
=> $$AB=\sqrt{156.25}=12.5$$ cm
$$\therefore$$ Perimeter of rhombus ABCD = $$4\times12.5=50$$ cm
=> Ans - (D)
Create a FREE account and get: