The value of$$\ \frac{3\sqrt{2}}{(\sqrt{3}+\sqrt{6})}-\frac{4\sqrt{3}}{(\sqrt{6}+\sqrt{2})}+\frac{\sqrt{6}}{(\sqrt{2}+\sqrt{3})}\ $$is
$$\frac{3\sqrt{2}}{(\sqrt{3}+\sqrt{6})}-\frac{4\sqrt{3}}{(\sqrt{6}+\sqrt{2})}+\frac{\sqrt{6}}{(\sqrt{2}+\sqrt{3})}$$
= $$\frac{6\sqrt{6}+18+6\sqrt{2}+6\sqrt{3}-(12\sqrt{2}+24+12\sqrt{3}+12\sqrt{6})+6\sqrt{3}+6+6\sqrt{6}+6\sqrt{2}}{(\sqrt{3}+\sqrt{6})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})}$$
=Â Â $$\frac{6\sqrt{6}+18+6\sqrt{2}+6\sqrt{3}-12\sqrt{2}-24-12\sqrt{3}-12\sqrt{6}+6\sqrt{3}+6+6\sqrt{6}+6\sqrt{2}}{(\sqrt{3}+\sqrt{6})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})}$$
=0
Create a FREE account and get: