ΔABC is a right angled triangle with AB = 6 cm, AC = 8 cm, ∠BAC = 90′. Then the radius of the incircle is
NOTE :- Area of triangle = (semi perimeter) * (inradius)
AB = 6 cm , AC = 8 cm and $$\angle$$BAC = 90°
From $$\triangle$$ABC,
BC = $$\sqrt{(AB)^2+(AC^2)}$$
= $$\sqrt{6^2+8^2} = \sqrt{36+64}$$
= 10 cm
Semi perimeter of $$\triangle$$ABC = s
= $$\frac{6+8+10}{2}$$ = 12 cm
Area of $$\triangle$$ABC = $$\frac{1}{2}$$*AB*AC
= $$\frac{1}{2}$$*6*8 = 24 $$cm^2$$
=> Inradius = $$\frac{\triangle}{s}$$ = $$\frac{24}{12}$$
= 2 cm
Create a FREE account and get: