If $$\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+\sqrt{7} b$$ the values of a and b are respectively
$$\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+\sqrt{7} b$$
L.H.S. = $$\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}$$
= $$\frac{(\sqrt{7}-1)^2 - (\sqrt{7}+1)^2}{(\sqrt{7}-1)(\sqrt{7}+1)}$$
= $$\frac{(7+1-2\sqrt{7})-(7+1+2\sqrt{7})}{7-1}$$
= $$\frac{-4\sqrt{7}}{6}$$
= $$\frac{-2\sqrt{7}}{3}$$
Now, comparing with R.H.S. $$a+\sqrt{7} b$$
we get,
$$a=0$$ and $$b=\frac{-2}{3}$$
Create a FREE account and get: