Question 154

If $$x+\frac{1}{x}=1$$ then the value of $$\frac{x^2+3x+1}{x^2+7x+1}$$

Solution

Expression : $$x+\frac{1}{x}=1$$

=> $$x^2 + 1 = x$$ ------Eqn(1)

To find : $$\frac{x^2+3x+1}{x^2+7x+1}$$

= $$\frac{(x^2+1) + 3x}{(x^2+1) + 7x}$$

Using eqn(1),we get :

= $$\frac{x + 3x}{x + 7x} = \frac{4}{8}$$

= $$\frac{1}{2}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App