Let AX$$\bot$$BC of an equilateral triangle ABC. Then the sum of the perpendicular distances of the sides of $$\triangle$$ABC from any point inside the triangle is:
Let Z be a point inside the triangle as shown in the figure
ZD$$\bot $$BC, ZE$$\bot $$AC, ZF$$\bot $$AB and AB=BC=CA
Area of ($$\triangle $$ZAB + $$\triangle $$ZBC + $$\triangle $$ZCA) = Area of $$\triangle $$ABC
$$=$$> Â $$\ \frac{1}{2}\times $$AB$$\times $$ZF + $$\ \frac{1}{2}\times $$BC$$\times $$ZD + $$\ \frac{1}{2}\times $$CA$$\times $$ZE = $$\ \frac{1}{2}\times $$BC$$\times $$AX
$$=$$> $$\ \frac{1}{2}\times $$BC$$\times $$ZF + $$\ \frac{1}{2}\times $$BC$$\times $$ZD + $$\ \frac{1}{2}\times $$BC$$\times $$ZE = $$\ \frac{1}{2}\times $$BC$$\times $$AX
$$=$$>Â Â Â ZF + ZD + ZE = AX
Hence, option A is the correct answer
Create a FREE account and get: