Given : $$\frac{x^{3}+3y^{2}x}{y^{3}+3x^{2}y}=\frac{35}{19}$$
By componendo and dividendo,
=>Â $$\frac{x^{3}+3y^{2}x+(y^3+3x^2y)}{x^{3}+3y^{2}x-y^3-3x^2y}=\frac{35+19}{35-19}=\frac{54}{16}$$
=> $$\frac{(x+y)^3}{(x-y)^3}=\frac{27}{8}=(\frac{3}{2})^3$$
=> $$\frac{x+y}{x-y}=\frac{3}{2}$$
By componendo and dividendo again, we get :
=>Â $$\frac{x+y+x-y}{x+y-x+y}=\frac{3+2}{3-2}$$
=> $$\frac{x}{y}=5$$
=> Ans - (C)
Create a FREE account and get: