If $$a+\frac{1}{b}=1$$ and $$b+\frac{1}{c}=1$$, then $$c+\frac{1}{a}$$ is equal to:
Given, Â $$a+\frac{1\ }{b}=1$$
$$=$$> Â $$a=1-\frac{1\ }{b}$$
$$=$$> Â $$a=\frac{b-1\ }{b}$$
$$=$$> Â $$\frac{1\ }{a}=\frac{b\ }{b-1}$$
Also, Â $$b+\frac{\ 1}{c}=1$$
$$=$$> Â $$\frac{\ 1}{c}=1-b$$
$$=$$> Â $$c=\frac{\ 1}{1-b}$$
$$\therefore c+\frac{\ 1}{a}=\frac{\ 1}{1-b}+\frac{\ b}{b-1}=\frac{\ 1}{1-b}-\frac{\ b}{1-b}=\frac{\ 1-b}{1-b}=1$$
Create a FREE account and get: