Question 148

If $$a+\frac{1}{b}=1$$ and $$b+\frac{1}{c}=1$$, then $$c+\frac{1}{a}$$ is equal to:

Solution

Given,  $$a+\frac{1\ }{b}=1$$

$$=$$>  $$a=1-\frac{1\ }{b}$$

$$=$$>  $$a=\frac{b-1\ }{b}$$

$$=$$>  $$\frac{1\ }{a}=\frac{b\ }{b-1}$$

Also,  $$b+\frac{\ 1}{c}=1$$

$$=$$>  $$\frac{\ 1}{c}=1-b$$

$$=$$>  $$c=\frac{\ 1}{1-b}$$

$$\therefore c+\frac{\ 1}{a}=\frac{\ 1}{1-b}+\frac{\ b}{b-1}=\frac{\ 1}{1-b}-\frac{\ b}{1-b}=\frac{\ 1-b}{1-b}=1$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App