$$(a+b)^3-3ab(a+b)=a^3+b^3$$
So, $$(a+b)^3-3ab(a+b)=416$$
or,$$16^3-3\times ab\times 16=416$$
or,$$3680=3\times ab\times 16$$
or,$$3ab=230.$$
or,$$ab=230/3.$$
AndÂ
$$(a-b)^2=(a+b)^2-4ab.$$
or,$$(a-b)^2=16^2-920/3$$
or,$$(a-b)^2=-152/3.$$
So, $$(a-b)^2+ab=(230-152)/3=78/3=26.$$
So, D is correct.
Create a FREE account and get: