The angles of elevation of the top of a tower from two points on the ground at distances 32 m and 18 m from its base and in the same straight line with it are complementary. The height(in m) of the tower is .....
Let $$ \angle ADB = \theta $$Â
then $$\angle ACD = (90^\circ - \theta) $$
In right triangle $$ \triangle ABD $$
$$ \tan \theta = \frac{AB}{BD} $$
$$\tan \theta = \frac{AB} {32} $$...........(1)
$$\triangle ABC $$Â
$$ \tan(90^\circ - \theta) = \frac{AB}{BC} $$
$$ \cot \theta = \frac{AB}{18} $$ ...........(2)
Multiplying Equation (1) and Equation (2)
$$ \tan \theta \times \frac{1}{\tan \theta} = \frac{AB}{32} \times \frac{AB}{18} $$
$$ 1 = \frac{(AB)^2} {32 \times 18} $$
$$ AB = \sqrt {18 \times 32Â } $$
 $$ \Rightarrow AB = 2 \times 2 \times 2 \times 3 $$
$$ \Rightarrow AB = 24 $$Â
The height of tower = 24 m AnsÂ
Create a FREE account and get: