In $$\triangle ABC, \angle = 90^\circ, AB = 16 cm$$ and $$AC = 12 cm$$. D is the midpoint of AC and $$DE \perp CB$$ at E. What is the area (in cm$$^2$$) of $$\triangle$$CDE?
from the given question we draw the diagram is given belowÂ
From the diagram , Let the $$ \triangle DEC, \angle c= \theta $$
$$ \tan \theta = \frac {16}{12}$$
$$\Rightarrow \tan \theta = \frac{4}{3}$$
 $$\Rightarrow \theta = 53.13 $$
So, $$ \sin theta = \frac{DE}{DC} $$
 $$\Rightarrow \sin 53.13 \times 6= DE $$Â
$$\Rightarrow DE = 4.8 $$
from the Pythagoras' Theorem
EC = 3.6Â
then Area of $$ \triangle CDEÂ = \frac{1}{2} \times 3.6 \times 4.8 $$
$$ \Rightarrow 8.64Â cm^2 $$ AnsÂ
Â
Create a FREE account and get: