Question 145

If 2 $$cos\ \theta-sin\ \theta=\frac{1}{\sqrt{2}}, (0^\circ\leq\theta\leq90^\circ)$$ the value of 2 sin $$\theta$$ + cos $$\theta$$ is

Solution

Expression : $$2cos\ \theta-sin\ \theta=\frac{1}{\sqrt{2}}$$

Squaring both sides, we get :

=> $$(2cos\ \theta-sin\ \theta)^2=(\frac{1}{\sqrt{2}})^2$$

=> $$4cos^2\ \theta+sin^2\ \theta-4sin\ \theta.cos\ \theta=\frac{1}{2}$$

=> $$4cos^2\ \theta+(1-cos^2\ \theta)-4sin\ \theta.cos\ \theta=\frac{1}{2}$$

=> $$3cos^2\ \theta-4sin\ \theta.cos\ \theta=\frac{-1}{2}$$ ---------------(i)

To find : $$2sin\ \theta+cos\ \theta=x$$

=> $$x^2=4sin^2\ \theta+cos^2\ \theta+4sin\theta.cos\ \theta$$

=> $$x^2=4(1-cos^2\ \theta)+cos^2\ \theta+4sin\ \theta.cos\ \theta$$

=> $$x^2=4-3cos^2\ \theta+4sin\ \theta.cos\ \theta$$

=> $$x^2=4-(3cos^2\ \theta-4sin\ \theta.cos\ \theta)$$

=> $$x^2=4-(\frac{-1}{2})$$      [Using equation (i)]

=> $$x^2=\frac{8+1}{2}=\frac{9}{2}$$

=> $$x=\sqrt{\frac{9}{2}}=\frac{3}{\sqrt2}$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App