Question 145

If 1.5x = 0.04y, then the value of $$\frac{y^2 - x^2}{y^2 - 2xy + x^2}$$

Solution

Given equation can be resolved as $$\frac{(y-x)\times(y+x)}{(y-x)^{2}}$$
or it will be $$\frac{(y+x)}{(y-x)}$$
or $$\frac{(\frac{(y)}{(x)}+1)}{(\frac{(y)}{(x)}-1)}$$

After putting value of $$\frac{(y)}{(x)}$$ from given equation and solving it 

we will get answer as $$\frac{(77)}{(73)} $$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App