From the top of a lamp post of height x metres, two objects on the ground on the sameside of it (and in line with the foot of the lamp post) are observed at angles of depression of $$30^\circ$$ and $$60^\circ$$, respectively. The distance between the objects is $$32\sqrt{3}$$ m. The value of x is:
from the question we draw the diagramÂ
Let BD =$$y $$
In the $$\triangle ABC $$Â
$$ \tan 30^\circ = \frac{x} {32\sqrt {3} +y} $$Â
$$ \frac {1} {\sqrt {3} } = \frac {x} {32 \sqrt {3} +y} $$ ...... Equestion (1)
then $$\triangle ABC $$
$$ \tan 60^\circ = \frac{x} {y} $$
$$ \sqrt {3} = \frac{x} {y} $$
$$ y = \frac {x} {\sqrt {3}Â } $$
Put the value $$ y $$ in Equation (1)
$$ \frac {1} {\sqrt {3}} = \frac {x} { 32 \sqrt {3} + \frac {x} {\sqrt {3}}} $$
$$\Rightarrow 32 + \frac{x}{3} = x $$
$$ \Rightarrow 2 \frac {x}{3} = 32 $$
$$\Rightarrow x = 48Â $$ AnsÂ
Create a FREE account and get: