The value of $$(\frac{\cos^2A(\sin A+\cos A)}{cosec^2A(\sin A- \cos A)}+\frac{sin^2(sin A - cos A}{sec^2 A(sin A(sinA+cos A})$$
$$(\frac{\cos^2A(\sin A+\cos A)}{cosec^2A(\sin A- \cos A)} )= \frac{\cos^2A \sin^2A(\sin A+\cos A)}{(\sin A- \cos A)}$$
$$(\frac{sin^2(sin A - cos A}{sec^2 A(sinA+cos A}) = \frac{sin^2 cos^2 A(sin A - cos A}{(sinA+cos A})$$
$$(\frac{\cos^2A(\sin A+\cos A)}{cosec^2A(\sin A- \cos A)}+\frac{sin^2(sin A - cos A}{sec^2 A(sinA+cos A}) = \frac{\cos^2A \sin^2A(\sin A+\cos A)}{(\sin A- \cos A)} + \frac{sin^2 cos^2 A(sin A - cos A)}{(sinA+cos A)})$$
$$\frac{\cos^2A \sin^2A(\sin A+\cos A)}{(\sin A- \cos A)} + \frac{sin^2 cos^2 A(sin A - cos A}{(sinA+cos A)}) = \cos^2A \sin^2A( \frac{(\sin A+\cos A)}{(\sin A- \cos A)} + \frac{(sin A - cos A)}{(sinA+cos A)})$$
$$ \cos^2A \sin^2A( \frac{(\sin A+\cos A)}{(\sin A- \cos A)} + \frac{(sin A - cos A)}{(sinA+cos A)})=\cos^2A \sin^2A( \frac{(\sin A+\cos A)^2 + (sin A - cos A)^2 }{(\sin A- \cos A)(sinA+cos A)} $$
Create a FREE account and get: