$$tan 9^{\circ}=\frac{p}{q}$$ then the value of $$\frac{\sec^281^{\circ}}{1+\cot^281^{\circ}}$$ is
we need to find value of $$\frac{\sec^281^{\circ}}{1+\cot^281^{\circ}}$$
given that : $$tan 9$$ = $$\frac{p}{q}$$
Using : 1 + $$tan^2 \theta$$ = $$sec^2 \theta$$ and $$cot^2 \theta$$ = $$tan^2 \theta$$
$$\frac{\sec^281^{\circ}}{1+\cot^281^{\circ}}$$
= $$\frac{1+tan^2 81}{1+tan^2 81}$$ x $$tan^2 81$$
= $$tan^2 81$$ = $$tan^2 (90-9)$$ = $$cot^2 9$$ = $$\frac{q^2}{p^2}$$
Create a FREE account and get: