if$$\ \frac{1}{sin \theta+cosec \theta}=\frac{1}{2}\ $$, then what is the value of sin$$^{100}\ \theta\ +\ cosec^{100}\ \theta$$?
Given : $$\ \frac{1}{sin \theta+cosec \theta}=\frac{1}{2}\ $$
=>Â $$\ \frac{1}{sin\theta+\frac{1}{sin\theta}}=\frac{1}{2}\ $$
=>Â $$\ \frac{sin\theta}{sin^2\theta+1}=\frac{1}{2}\ $$
=> $$sin^2\theta+1-2sin\theta=0$$
=> $$(sin\theta-1)^2=0$$
=> $$sin\theta=1$$
Also, $$cosec\theta=\frac{1}{sin\theta}=1$$
$$\therefore$$Â $$\ sin^{100}\ \theta+cosec^{100}\ \theta\ $$
= $$(1)^{100}+(1)^{100}=1+1=2$$
=> Ans - (D)
Create a FREE account and get: