If $$\ \frac{1}{cos\theta+sec\theta}=\frac{1}{2}\ $$, then what is the value of $$\ cos^{100}\ \theta+sec^{100}\ \theta\ $$?
Given : $$\ \frac{1}{cos\theta+sec\theta}=\frac{1}{2}\ $$
=>Â $$\ \frac{1}{cos\theta+\frac{1}{cos\theta}}=\frac{1}{2}\ $$
=>Â $$\ \frac{cos\theta}{cos^2\theta+1}=\frac{1}{2}\ $$
=> $$cos^2\theta+1-2cos\theta=0$$
=> $$(cos\theta-1)^2=0$$
=> $$cos\theta=1$$
Also, $$sec\theta=\frac{1}{cos\theta}=1$$
$$\therefore$$Â $$\ cos^{100}\ \theta+sec^{100}\ \theta\ $$
= $$(1)^{100}+(1)^{100}=1+1=2$$
=> Ans - (C)
Create a FREE account and get: