Question 142

If $$a^2+a+1=0$$, then the value of $$a^4+a^2+1$$ is:

Solution

Given : $$a^2+a+1=0$$

Dividing both sides by $$'a'$$, we get

=> $$a+1+\frac{1}{a}=0$$

=> $$a+\frac{1}{a}=-1$$

Squaring both sides, we get :

=> $$(a+\frac{1}{a})^2=(-1)^2$$ 

=> $$a^2+\frac{1}{a^2}+2(a)(\frac{1}{a})=1$$

=> $$a^2+\frac{1}{a^2}=1-2=-1$$

=> $$a^4+a^2+1=0$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App