If $$cos^4\theta-sin^4\theta=\frac{2}{3}$$, then the value of $$1-2sin^2\theta$$ is,
$$cos^4\theta-sin^4\theta=(cos^2\theta-sin^2\theta)(cos^2\theta+sin^2\theta)=cos^2\theta-sin^2\theta=\frac{2}{3}$$
$$cos^2\theta-sin^2\theta =1-2sin^2\theta=\frac{2}{3}$$
Create a FREE account and get: