If $$4\tan\theta=3,\frac{5\sin\theta-3\cos\theta}{5\sin\theta+3\cos\theta}$$ is equal to:
$$4\tan\theta\ =3.$$
or,$$\frac{\sin\ \theta\ \ }{\cos\ \theta\ }=\ \frac{\ 3}{4}.$$
Let say,$$\sin\theta\ =3k\ and\ \cos\theta\ =4k.$$
So,$$\ \frac{\ 5\sin\ \theta\ -3\cos\ \theta\ }{5\sin\ \theta\ +3\cos\ \theta\ }$$
$$\ =\frac{\ 5\times\ 3k\ -3\times\ 4k\ }{5\times\ 3k\ +3\times\ 4k\ }$$
$$\ =\frac{\ 15k\ -12k\ }{15k\ +12k\ }$$
$$\ =\frac{\ 3k\ }{27k\ }$$
$$\ =\frac{\ 1\ }{9}.$$
A is correct choice.
Create a FREE account and get: