If 4sin$$^{2}$$ 2θ - 3 = 0 and θ is acute, then what is the value of (cot$$\ ^{2}\ $$ θ + tan $$^{2}$$ θ)?
Given : $$4sin^22\theta-3=0$$
=> $$sin^22\theta=\frac{3}{4}$$
=> $$sin2\theta=\sqrt{\frac{3}{4}}=\frac{\sqrt3}{2}$$
=> $$sin2\theta=sin(60^\circ)$$
=> $$2\theta=60$$
=> $$\theta=\frac{60}{2}=30^\circ$$
$$\therefore$$ $$cot^2\theta+tan^2\theta$$
= $$cot^2(30^\circ)+tan^2(30^\circ)$$
= $$(\sqrt3)^2+(\frac{1}{\sqrt3})^2$$
= $$3+\frac{1}{3}=\frac{10}{3}$$
=> Ans - (C)
Create a FREE account and get: