What is the simplified value of
$$\left(1 - \frac{1}{4 - \frac{2}{1 + \frac{1}{\frac{1}{3} + 2}}}\right) \times \frac{15}{16} \div \frac{2}{3} of 2\frac{1}{4} - \frac{3 + 4}{3^3 + 4^3}$$
Expression :Â $$\left(1 - \frac{1}{4 - \frac{2}{1 + \frac{1}{\frac{1}{3} + 2}}}\right) \times \frac{15}{16} \div \frac{2}{3} of 2\frac{1}{4} - \frac{3 + 4}{3^3 + 4^3}$$
=Â $$\left(1 - \frac{1}{4 - \frac{2}{1 + \frac{3}{7}}}\right) \times \frac{15}{16} \div \frac{2}{3} of \frac{9}{4} - \frac{3 + 4}{3^3 + 4^3}$$
= $$\left(1 - \frac{1}{4 - \frac{14}{10}}\right) \times \frac{15}{16} \div \frac{3}{2} - \frac{3 + 4}{3^3 + 4^3}$$
=Â $$\left(1 - \frac{10}{26}\right) \times \frac{15}{16} \times \frac{2}{3} - \frac{7}{91}$$
=Â $$\frac{8}{13}\times\frac{5}{8}-\frac{1}{13}$$
= $$\frac{5}{13}-\frac{1}{13}=\frac{4}{13}$$
=> Ans - (D)
Create a FREE account and get: