The value of $$\frac{4}{1+\tan^{2}\alpha}+\frac{3}{1+\cot^{2}\alpha}+ \sin^{2}\alpha$$ is
we need to find the value of $$\frac{4}{1+\tan^{2}\alpha}+\frac{3}{1+\cot^{2}\alpha}+ \sin^{2}\alpha$$
We know that ,
1 + $$tan^2 \alpha$$ = $$sec^2 \alpha$$
1 + $$cot^2 \alpha$$ = $$cosec^2 \alpha$$
Using above mentioned identities
$$\frac{4}{sec^2 \alpha}$$ + $$\frac{3}{cosec^2 \alpha}$$ + $$sin^2 \alpha$$
4$$cos^2 \alpha$$ + 4$$sin^2 \alpha$$
4($$cos^2 \alpha$$ + $$sin^2 \alpha)$$
=4
Create a FREE account and get: