Question 140

The value of $$\frac{4}{1+\tan^{2}\alpha}+\frac{3}{1+\cot^{2}\alpha}+ \sin^{2}\alpha$$ is

Solution

we need to find the value of $$\frac{4}{1+\tan^{2}\alpha}+\frac{3}{1+\cot^{2}\alpha}+ \sin^{2}\alpha$$

We know that ,

1 + $$tan^2 \alpha$$ = $$sec^2 \alpha$$

1 + $$cot^2 \alpha$$ = $$cosec^2 \alpha$$

Using above mentioned identities

$$\frac{4}{sec^2 \alpha}$$ + $$\frac{3}{cosec^2 \alpha}$$ + $$sin^2 \alpha$$

4$$cos^2 \alpha$$ + 4$$sin^2 \alpha$$

4($$cos^2 \alpha$$ + $$sin^2 \alpha)$$

=4


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App