Sign in
Please select an account to continue using cracku.in
↓ →
If tan θ + cot θ = 2, then the value of $$tan^2\theta+cot^2\theta$$ is
Given : $$tan\theta+cot\theta=2$$
Using, $$(x+y)^2=x^2+y^2+2xy$$
=> $$(tan\theta+cot\theta)^2=tan^2\theta+cot^2\theta+2tan\theta cot\theta$$
Also, $$\because tan\theta=\frac{1}{cot\theta}$$
=> $$(tan\theta+cot\theta)^2=tan^2\theta+cot^2\theta+2$$
=> $$(2)^2=tan^2\theta+cot^2\theta+2$$
=> $$tan^2\theta+cot^2\theta=4-2=2$$
=> Ans - (A)
Create a FREE account and get: