Question 139

If $$\cos\theta + \sin\theta = \sqrt{2}\cos\theta$$, then $$\cos\theta - \sin\theta$$ is

Solution

$$\sin^2 \theta + \cos^2 \theta = 1$$
So, $$\sin^2 \theta + \cos^2 \theta + 2\sin\theta * \cos \theta = 2 \cos^2\theta$$
Hence, $$\cos^2 \theta - \sin^2 \theta = 2 \sin\theta*\cos\theta$$
So, $$\cos\theta - \sin\theta = \sqrt{2}\sin\theta$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App