Given : $$a^2+b^2+c^2-ab-bc-ca=0$$
Multiplying both sides by 2, we get :
=>Â $$2a^2+2b^2+2c^2-2ab-2bc-2ca=0$$
=> $$(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0$$
=> $$(a-b)^2+(b-c)^2+(c-a)^2=0$$
$$\because$$ Sum of three positive sum is 0, then each term is equal to '0'
=> $$(a-b)=(b-c)=(c-a)=0$$
=> $$a=b=c$$
$$\therefore$$ $$a:b:c=1:1:1$$
=> Ans - (B)
Create a FREE account and get: