Join WhatsApp Icon CAT WhatsApp Group
Question 138

ABCD is cyclic quadrilateral. Sides AB and DC, when produced, meet at E, and sides BC and AD, when produced, meet at F. If $$\angle$$BFA = $$60^\circ$$ and $$\angle$$AED = $$30^\circ$$, then the measure of $$\angle$$ABC is:

From the given question we draw the diagram is given below 

from the above diagram $$\angle BFA = 60^\circ , $$\angle AFD = 30^\circ $$

then $$ \angle EBC + \angle ABC = 180^\circ $$ (straight line) .............(1)

$$ \angle ABC + \angle ADC = 180^\circ $$ (Opposite angle of cyclic quadrilateral)..... (2)  

from the above Equestion (1) and (2) 

$$ \angle EBC + \angle ABC = \angle ABC + \angle ADC $$

$$\angle EBC = \angle ADC $$ .......(3) 

$$ \angle DFC + \angle DCF + \angle CDF = 180^\circ $$ (angle sum property of a triangle) ....... (4) 

$$ \angle BCE + \angle CBE + \angle CEB = 180^\circ $$ (angle sum property of a triangle) .........(5)

from the equestion (4) and (5) 

$$ \angle DCF = \angle BCF $$ (Vertically Opposite angle) 

$$\angle DFC + \angle DCF + \angle CDF = \angle BCE + \angle CBF + \angle CEB $$

$$\Rightarrow \angle DFC + \angle CDF = \angle CBF + \angle CEB $$

$$\Rightarrow 60^\circ + 180^\circ - \angle EBC = \angle EBC + \angle CEB $$

$$\Rightarrow 60^\circ + 180^\circ = 2 \angle EBC + 30^\circ $$

$$\Rightarrow 2 \angle EBC = 210^\circ $$

$$\Rightarrow \angle EBC= 105^\circ $$

then $$\angle ABC + \angle EBC = 180^\circ $$

$$\Rightarrow \angle ABC + 105^\circ = 180^\circ $$

$$\Rightarrow \angle ABC = 180^\circ -105^\circ $$

$$\Rightarrow \angle ABC = 75^\circ $$ Ans 

Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free