Let ABC be an equilateral triangle and AD perpendicular to BC. Then AB$$^2$$ + BC$$^2$$ + CA$$^2$$ = ?
Given ABC is an equilateral triangle
Let the length of the side = a
$$=$$>Â AB = BC = CA = a
AD is the perpendicular bisector to BC
$$=$$>Â BD = CD = $$\frac{a}{2}$$
From $$\triangle$$ABD,
AD$$^2$$ + BD$$^2$$ = AB$$^2$$
$$=$$> Â AD$$^2$$ +Â $$\left(\frac{a}{2}\right)^2$$ = Â a$$^2$$
$$=$$> Â AD$$^2$$ =Â a$$^2$$ -Â $$\frac{a^2}{4}$$
$$=$$> Â AD$$^2$$ =Â $$\frac{3a^2}{4}$$
$$=$$> Â $$a^2=\frac{4}{3}$$AD$$^2$$
$$\therefore\ $$AB$$^2$$ + BC$$^2$$ + CA$$^2$$ = a$$^2$$ + a$$^2$$ + a$$^2$$ = 3a$$^2$$ = $$3\left(\frac{3}{4}AD^2\right)$$ = $$4AD^2$$
Hence, the correct answer is Option C
Create a FREE account and get: