Sign in
Please select an account to continue using cracku.in
↓ →
If $$x^4 + x^2y^2 + y^4 = 133$$ and $$x^2 - xy + y^2 = 7$$,then what is the value of xy?
As per the given question,
$$x^4 + x^2y^2 + y^4 = 133--------(i)$$
$$x^2 - xy + y^2 = 7----(ii)$$
Taking the square of the equation (ii)
$$\Rightarrow (x^2 - xy + y^2)^2 = 7^2$$
$$\Rightarrow x^4+x^2y^2+y^4+2(-x^3y-y^3x+x^2y^2)=49$$
$$\Rightarrow 133-2xy(x^2-xy+y^2)=49$$
$$\Rightarrow 133-2xy\times 7=49$$
$$\Rightarrow 2xy\times 7=133-49$$
$$\Rightarrow 14xy=84$$
$$\Rightarrow xy=6$$
Create a FREE account and get: