If a, b, c are non-zero, $$a+\frac{1}{b}=1$$ and $$b+\frac{1}{c}=1$$ then the value of abc is :
It is given that : $$b + \frac{1}{c} = 1$$
=> $$b = (1 - \frac{1}{c})$$ -------------Eqn(1)
Also, $$a + \frac{1}{b} = 1$$
=> $$a = 1 - \frac{1}{b}$$
=> $$a = 1 - \frac{1}{1 - \frac{1}{c}}$$ [Using Eqn(1)]
=> $$a = (1 - \frac{c}{c-1})$$ ---------------Eqn(2)
To find : $$abc$$
Using eqn(1) and (2)
= $$(1 - \frac{c}{c-1}) (1 - \frac{1}{c}) (c)$$
= $$(\frac{-1}{c-1}) (\frac{c-1}{c}) (c)$$
= $$-1$$
Create a FREE account and get: