The value of $$\frac{\frac{1}{3} + \left[4\frac{3}{4} - \left(3\frac{1}{6} - 2\frac{1}{3}\right)\right]}{\left(\frac{1}{5} of \frac{1}{5} \div \frac{1}{5}\right)\div \left(\frac{1}{5} \div \frac{1}{5} \times \frac{1}{5}\right)}$$ lies between:
$$\frac{\frac{1}{3} + \left[4\frac{3}{4} - \left(3\frac{1}{6} - 2\frac{1}{3}\right)\right]}{\left(\frac{1}{5} of \frac{1}{5} \div \frac{1}{5}\right)\div \left(\frac{1}{5} \div \frac{1}{5} \times \frac{1}{5}\right)}$$
$$\Rightarrow\frac{\frac{1}{3} + \left[4\frac{3}{4} - \left(\dfrac {19}{6} - \dfrac{7}{3}\right)\right]}{\left(\dfrac{1}{25} \div \dfrac{1}{5}Â \div \dfrac{1}{5}\right)}$$
$$\Rightarrow\frac{\frac{1}{3} + \dfrac{19}{4} - \dfrac{5}{6}}{\left(\dfrac{1}{25} \times \dfrac{5}{1} \times \dfrac{5}{1}\right)}$$
$$\Rightarrow\frac{1}{3} + \dfrac{19}{4} - \dfrac{5}{6}$$
$$\Rightarrow\dfrac{4+57-10}{12}$$
$$\Rightarrow\dfrac{61-10}{12}$$
$$\Rightarrow\dfrac{51}{12}$$
$$\Rightarrow\dfrac{17}{4}$$
$$\Rightarrow 4\dfrac{1}{4}$$
$$\Rightarrow 4.25$$
Here 4.2<4.25<4.4
therefore Option (B) 4.2 and 4.4 Ans
Create a FREE account and get: