If $$\ x^{4}+\frac{1}{x^{4}}\ $$= 98 and $$x > 1$$, then what is the value of $$x-\frac{1}{x}\ ?$$
Given : $$\ x^{4}+\frac{1}{x^{4}}\ =98$$
=> $$(x^2+\frac{1}{x^2})^2-2(x^2)(\frac{1}{x^2})=98$$
=> $$(x^2+\frac{1}{x^2})^2=98+2=100$$
=> $$x^2+\frac{1}{x^2}=\sqrt{100}=10$$
=> $$(x-\frac{1}{x})^2+2(x)(\frac{1}{x})=10$$
=> $$(x-\frac{1}{x})^2=10-2=8$$
=> $$x-\frac{1}{x}=\sqrt8=2\sqrt2$$
=> Ans - (B)
Create a FREE account and get: