From the top of a house A in a street, the angles of elevation and depression of the top and foot of another house B on the opposite side of the street are $$60^\circ$$ and $$45^\circ$$, respectively. If the height of house A is 36 m, then what is the height of house B? (Your answer should be nearest to an Integer.)
From the above question, we draw the diagram is given belowÂ
In $$ \triangle ADCÂ $$
$$ \tan 45^\circ = \frac{DC} {AD} $$
$$ \Rightarrow 1 = \frac{36} {AD}$$
$$\Rightarrow AD = 36 m $$
In $$\triangle ADB $$
$$ \tan 60^\circ = \frac{BD}{AD}$$
$$ \Rightarrow BD= 36 \times \sqrt {3} $$Â
then Length of Building = BD + DCÂ
       $$ \Rightarrow 36 \sqrt{3} + 36 $$
       $$\Rightarrow 36 (1+\sqrt{3}) $$
       $$ \Rightarrow 36 \times (1+1.73) $$
       $$\Rightarrow 36 \times 2.73 $$
      $$\Rightarrow 98.28 $$
therefore Height of house B= 98 m Ans       Â
Create a FREE account and get: