The total surface area of a right pyramid on a square base of side 10 cm with height 12 cm is:
Height = $$h=12$$ cm and side of base = $$s=10$$ cm
=> Radius of base = $$r=\frac{10}{2}=5$$ cm
Perimeter of base = $$4\times10=40$$ cm
Area of base = $$10\times10=100$$ $$cm^2$$
Thus, slant height = $$l=\sqrt{r^2+h^2}$$
=> $$l=\sqrt{(5)^2+(12)^2}$$
=> $$l=\sqrt{25+144}=\sqrt{169}=13$$ cm
Thus, curved surface area of pyramid = $$\frac{1}{2}\times$$ Perimeter of base $$\times$$ slant height
= $$\frac{1}{2}\times40\times13=260$$ $$cm^2$$
$$\therefore$$ Total surface area of pyramid = Curved surface area + Area of base
= $$260+100=360$$ $$cm^2$$
=> Ans - (B)
Create a FREE account and get: