If $$\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}$$= 62, then what is the value of $$x$$ ($$x < 0$$) ?
Expression :Â $$\frac{x+\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}+\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=62$$
=> $$\frac{(x+\sqrt{x^2-1})^2+(x-\sqrt{x^2-1})^2}{(x-\sqrt{x^2-1})(x+\sqrt{x^2-1})}=62$$
=> $$\frac{(x^2+x^2-1+2x\sqrt{x^2-1})+(x^2+x^2-1-2x\sqrt{x^2-1})}{(x^2)-(x^2-1)}=62$$
=> $$\frac{4x^2-2}{1}=62$$
=> $$4x^2-2=62$$
=> $$4x^2=62+2=64$$
=> $$x^2=\frac{64}{4}=16$$
=> $$x=\sqrt{16}=\pm4$$
$$\because x<0$$, => $$x=-4$$
=> Ans - (A)
Create a FREE account and get: