Question 133

If a^3 - b^3 = 56 and a - b = 2, then the value of (a^2 + b^2 + ab) is :

Solution

it is given that $$a^3 - b^3$$ = 56

we know $$a^3 - b^3 = (a-b)(a^2 + b^2 + ab)$$

a- b = 2 (Given)

hence

$$(a^2 + b^2 + ab)$$ = $$\frac{56}{2}$$ = 28


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App