Sign in
Please select an account to continue using cracku.in
↓ →
If $$a + b + c = - 11$$, then what is the value of $$\ (a + 4)^{3}+(b+ 5)^{3}+(c + 2)^{3}-3(a + 4)(b + 5)(c + 2)\ $$?
Given : $$a+b+c=-11$$
=> $$a+b+c+11=0$$
=> $$(a+4)+(b+5)+(c+2)=0$$
Let $$(a+4)=x$$, $$(b+5)=y$$ and $$(c+2)=z$$
=> $$x+y+z=0$$ -----------(i)
To find : $$\ (a + 4)^{3}+(b+ 5)^{3}+(c + 2)^{3}-3(a + 4)(b + 5)(c + 2)\ $$
= $$x^3+y^3+z^3-3xyz$$
= $$(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$
Substituting value from equation (i), we get :
= $$(0)(x^2+y^2+z^2-xy-yz-zx)=0$$
=> Ans - (C)
Create a FREE account and get: