If θ is positive acute angle and $$3 (sec^2 θ + tan^2 θ) = 5$$, then which one is true ?
Given : $$3 (sec^2 θ + tan^2 θ) = 5$$
=> $$sec^2 θ + tan^2 θ = \frac{5}{3}$$ ------------(i)
Also, $$sec^2\theta-tan^2\theta=1$$ -------------(ii)
Adding both equations, => $$2sec^2\theta=\frac{8}{3}$$
=> $$cos^2\theta=\frac{3}{4}$$
=> $$cos\theta=\frac{\sqrt3}{2}=cos(30^\circ)$$
=> $$\theta=30^\circ$$
Now, $$cos(60^\circ)=sin(30^\circ)$$
=> $$cos(2\theta)=sin(\theta)$$
=> Ans - (B)
Create a FREE account and get: