Question 132

A cyclic quadrilateral ABCD is such that AB = BC, AD = DC, AC ⊥ BD, ∠CAD = θ. Then the angle ∠ABC =

Solution

AB = BC and AD = DC , $$\angle CAD = \theta$$

In isosceles $$\triangle$$ADC

=> $$\angle$$CAD + $$\angle$$ACD + $$\angle$$CDA = 180

=> $$2\theta$$ + $$\angle$$CDA = 180

=> $$\angle$$CDA = 180 - $$2\theta$$

Sum of opposite angles in a cyclic quadrilateral = 180

=> $$\angle$$CDA + $$\angle$$ABC = 180

=> $$\angle$$ABC + 180 - $$2\theta$$ = 180

=> $$\angle$$ABC = $$2\theta$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App