A cyclic quadrilateral ABCD is such that AB = BC, AD = DC, AC ⊥ BD, ∠CAD = θ. Then the angle ∠ABC =
AB = BC and AD = DC , $$\angle CAD = \theta$$
In isosceles $$\triangle$$ADC
=> $$\angle$$CAD + $$\angle$$ACD + $$\angle$$CDA = 180
=> $$2\theta$$ + $$\angle$$CDA = 180
=> $$\angle$$CDA = 180 - $$2\theta$$
Sum of opposite angles in a cyclic quadrilateral = 180
=> $$\angle$$CDA + $$\angle$$ABC = 180
=> $$\angle$$ABC + 180 - $$2\theta$$ = 180
=> $$\angle$$ABC = $$2\theta$$
Create a FREE account and get: