Total surface area of aright circular cylinder is 1848 cm$$^2$$. The ratio of its total surface area to the curved surface area is 3: 1. The volume of the cylinder is:(Take $$\pi = \frac{22}{7}$$)
We know that curved surface area = $$ 2\pi r h$$
total surface area = $$ 2 \pi r (r+h)$$
and volume of the cylinder = $$\pi r^2 h $$
according to question given ratioÂ
$$\Rightarrow \dfrac {2\pi r (r+h)}{2\pi r h} = \dfrac {3}{1}$$
$$\Rightarrow r +h = 3h $$
$$\Rightarrow 2h = r $$
then volume of cylinder =$$ \pi (2r)^2 h $$ = $$4\pi h^3 $$
given that $$2\pi r (r+h) = 1848 $$
$$\Rightarrow 2\pi \times 2h (3h) = 1848 $$
$$\Rightarrow 12\pi h^2 = 1848 $$
$$\Rightarrow \pi h^2 = 154 $$
$$\Rightarrow h^2 = \dfrac{154\times 7}{22}$$ = 49Â
$$\Rightarrow h = 7 $$
then $$V = 4\pi h^3$$
$$\Rightarrow 4 \times \dfrac{22}{7}\times 343 $$
$$\Rightarrow 4312 cm^3 $$AnsÂ
Create a FREE account and get: