If $$x=17-4\sqrt{18}$$, then find the value of $$(\sqrt{x}+\frac{1}{\sqrt{x}})$$Â ?
Expression : $$x=17-4\sqrt{18}$$
=>Â $$x=17-2\sqrt{72}$$
=> $$x=(\sqrt9)^2+(\sqrt8)^2+2(\sqrt9)(\sqrt8)$$
Using, $$a^2+b^2+2ab=(a+b)^2$$
=> $$x=(\sqrt9+\sqrt8)^2$$
=> $$\sqrt{x}=3+2\sqrt2$$ -------------(i)
Also, $$\frac{1}{\sqrt{x}}=\frac{1}{3+2\sqrt2}$$
Rationalizing the denominator, we get :
=>Â $$\frac{1}{\sqrt{x}}=\frac{1}{3+2\sqrt2}\times(\frac{3-2\sqrt2}{3-2\sqrt2})$$
=>Â $$\frac{1}{\sqrt{x}}=\frac{3-2\sqrt2}{9-8}$$
=>Â $$\frac{1}{\sqrt{x}}=3-2\sqrt2$$ ---------(ii)
Adding equation (i) and (ii),
$$\therefore$$ $$(\sqrt{x}+\frac{1}{\sqrt{x}})=(3+2\sqrt2)+(3-2\sqrt2)=6$$
=> Ans - (D)
Create a FREE account and get: