If a + b+c= 0, then the value $$(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b})$$ $$(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})$$ is:
Given : $$a+b+c = 0$$
Let $$a = 1 , b = 1$$ and $$c = -2$$ [We can take any values that satisfy above equation]
To find : $$(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b})$$ $$(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})$$
= $$(\frac{2}{-2} + \frac{-1}{1} + \frac{-1}{1}) (\frac{1}{-1} + \frac{1}{-1} + \frac{-2}{2})$$
= $$(-3) (-3) = 9$$
Create a FREE account and get: