I and 0 are respectively the in-centre and circumcentre of a triangle ABC. The line AI produced intersects the circumcircle of ΔABC at the point D. If ∠ABC = x°, ∠BID = y° and ∠BOD = z°, then $$\frac{z+x}{y}=$$
For cicumcentre and its chord BD
$$\angle$$BAD = $$\angle$$BOD/2
=> $$\angle$$BAD = z/2
In $$\triangle$$ABE
=> $$\angle$$BEA + $$\angle$$EAB + $$\angle$$ABE = 180
=> $$\angle$$BEA = 180 - z/2 - x
Since, BI is angle bisector
=> $$\angle$$IBE = $$\angle$$ABE/2
=> $$\angle$$IBE = X/2
Now, in $$\triangle$$IBE
=> $$\angle$$IBE + $$\angle$$BIE + BEI = 180
=> $$\frac{x}{2} + (180-\frac{z}{2} - x) + y$$ = 180
=> $$y = \frac{x}{2} + \frac{z}{2}$$
=> $$\frac{x+z}{y} = 2$$
Create a FREE account and get: