If $$\left(\frac{x}{3}\right) + \left(\frac{3}{x}\right) = 1$$ then the value of $$x^3$$ is?
$$\left(\frac{x}{3}\right) + \left(\frac{3}{x}\right) = 1$$Â Â Eq.(i)
Apply cube on both of the sides.
$$\left[(\frac{x}{3}\right) + \left(\frac{3}{x}\right)]^3 = 1^3$$
$$\frac{x^3}{27} + \frac{27}{x^3}+3\times\frac{x}{3}\times\frac{3}{x}\times(\frac{x}{3}+\frac{3}{x}) = 1$$
$$\frac{x^3}{27}+\frac{27}{x^3}+3\times(\frac{x}{3}+\frac{3}{x})=1$$
Put Eq.(i) in the above equation.
$$\frac{x^3}{27}+\frac{27}{x^3}+3\times1=1$$
$$\frac{x^3}{27}+\frac{27}{x^3} = 1-3$$
$$\frac{x^3}{27}+\frac{27}{x^3} = -2$$
Now only the possible value of $$x^3$$ will be -27 for satisfying the above-given equation.
So option (a) is the correct answer.
Create a FREE account and get: